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Abstract. We study the d-dimensional quantum XY model with ferromagnetic long-range interaction de-
caying as r−p in terms of boson operators, by employing the coherent state path integral approach. We
have obtained a finite critical temperature as a function of the dimension (d) for d < p < 2d. For p > 2d the
system becomes disordered at all temperatures. For the particular values p = 3/2 and d = 1 our theoretical
calculations are comparable to those from Monte Carlo simulations.

PACS. 64.60.Ak Renormalization-group, fractal, and percolation studies of phase transitions – 64.60.Fr
Equilibrium properties near critical points, critical exponents – 68.35.Rh Phase transitions and critical
phenomena

1 Introduction

In recent years, extensive attention has been applied to
on the investigation of low-dimensional magnetism. It has
been proved by Mermin and Wagner [1] that the one- and
two-dimensional isotropic Heisenberg and XY models with
short-range interaction do not present any spontaneous
magnetization at any finite temperature (T > 0). The
Mermin-Wagner theorem has been recently generalized by
Bruno [2] to include long-range exchange interactions de-
creasing as Jij = J

rp
ij

(rij is the distance between sites) and

it has been shown that for p ≥ 2d (d is the dimension of the
lattice) the Heisenberg and XY models cannot be ferro-
magnetic, where the condition p > d is needed in order to
avoid a ground state with an infinite energy per spin. For
the parameter p ∈ (d, 2d) a ferromagnetic ordered phase
exists [3]. In the case of the Ising model, where we have
a discrete broken symmetry, the ordered phase survives
for p ∈ (d, 2d). For p = 2 the spontaneous magnetiza-
tion of the one-dimensional Ising model is discontinuous
at T = Tc(p = 2) (the so-called Thouless effect) [5].

Long-range interactions are always of interest in dif-
ferent fields of physics because they can give rise to a va-
riety of unusual macroscopic behavior, the best example
in condensed matter being the dipole-dipole interaction
(p = 3). It is well known that the long-range nature of
interactions can drastically modify the critical behavior
in low-dimensional classical and quantum systems. Using
the Onsager reaction field theory on the one-dimensional
Heisenberg and XY models, Pires has shown [7] that for
1 < p < 2 the critical temperature Tc is finite (Tc > 0).
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For p > 2 these models are disordered at finite tem-
peratures (i.e., Tc = 0). On the other hand, the bor-
derline case p = 2 of the one-dimensional planar rota-
tor system presents a transition to a phase with a slow
decrease of correlation functions and an infinite suscepti-
bility (Kosterlitz-Thouless-like transition-KTLT) [8]. This
KTLT has been obtained in the framework of the har-
monic approximation [8,9] and a self-consistent harmonic
approximation [10]. In the region p ∈ (0, d) the systems
are nonextensive [11], where the best known examples are
the gravitational N -body problem, black holes and su-
perstrings, Lévy-like and correlated like anomalous diffu-
sion, two-dimensional turbulence, granular matter, such
as sandpiles, etc. These systems have been investigated in
the context of mean field theory and generalized thermo-
statistics [11]. New methods have been proposed to study
nonextensive spin systems in the framework of the general-
ized thermostatistics, such as renormalization group [12],
the broad histogram Monte Carlo method [13] and the
two-time Green’s function technique [14]. However, all the
above theoretical results are related to Boltzmann-Gibbs
statistics (p > d).

Our work is organized as follows. In Section 2, we in-
troduce the model and theoretical technique. The results
of the phase diagram and discussions are presented in Sec-
tion 3. We conclude in Section 4 with a summary of the
results.

2 Model and formalism

In this paper we will study the d-dimensional quantum XY
model with long-range ferromagnetic interaction described
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by the Hamiltonian

H = −
∑

n,m

Jnm (Sx
nSx

m + Sy
nSy

m) − H
∑

n

Sx
n, (1)

with
Jnm =

J

|−→n −−→m|p , (2)

where S
α

l is the α(= x, y) component of the spin op-
erator at site l and H the magnetic field. Notice that
as p → ∞ the model described by equation (1) ap-
proaches the nearest-neighbor model, which for d = 1, 2
has no order-disorder transition, but a transition to a low-
temperature phase possessing infinite susceptibility and
asymptotic power-law decay for the correlation function,
the so-called Kosterlity-Thouless transition (KT) [15].

In the boson language, the spin operators in each lat-
tice site are replaced by the boson creation a+

i and anni-
hilation ai operators (i.e., S+

j = Sx
j + iSy

j =
√

2Sa+
j and

S−
j = Sx

j − iSy
j =

√
2Saj) [16] with commutation rela-

tion
[
ai, a

+
j

]
= δij . Therefore, the Hamiltonian (1) in the

boson space can be rewritten as

H = −2S
∑

n,m

Jnma+
n am + 2Sµ

N∑

n=1

a+
n an − µS2N

− H

√
2S

2

N∑

n=1

(a+
n + an), (3)

where N is the total number of sites, µ is a Lagrange
multiplier to impose the spherical constraint in the spin

space:
N∑

i=1

[
(Sx

i )2 + (Sy
i )2

]
= NS(S + 1), which in terms

of bosons becomes a mean hard-core boson constraint
N∑

n=1

a+
n an =

NS

2
. (4)

The Hamiltonian (3) is an extended hard-core boson sys-
tem with boson hopping Jnm and chemical potential µ,
that has been studied in the context of a superfluid-Mott
insulator transition [17]. Superfluidity in the boson model
described in equation (3) corresponds to the magnetiza-
tion in the XY plane. The condition (4) implies that the
boson number ni = a+

i ai could take on any value be-
tween 0 and ∞ (not just 0 or 1), subject only to the so-
called mean hard-core boson constraint (4), like the orig-
inal concept of the spherical model in the spin space [18].

Following the procedure used in reference [16] we ob-
tain the Fourier transform of the Hamiltonian (3) with the
constraint (4)

H =
∑

k

wka+
k ak − H

√
2S

2

∑

k

(a+
k + ak) − µS2N, (5)

where a+
k , ak are the corresponding Fourier transforms of

the boson operators and the dispersion relation is given by

wk = 2S(µ − Jk), (6)

with
Jk =

∑

n,m

Jnmei
−→
k .(−→n−−→m). (7)

The partition function Z = Tre−βH is obtained us-
ing the coherent state functional integral representation
in the Matsubara imaginary time formulation [19]. After
integrating over the bosonic variables, the free energy per
site, f = − 1

βN ln Z, is given by

f =
1

βN

∑

k

ln
(

2 sinh
βwk

2

)
− H2

4(µ − Jo)
− µS(S + 1),

(8)
where β = 1/kBT . The Lagrange multiplier µ is deter-
mined by minimizing the free energy, i.e., ∂f

∂µ = 0. The
constraint (4) then becomes

S

N

∑

k

coth
βwk

2
+

H2

4(µ − Jo)2
= S(S + 1), (9)

from which the parameter µ is determined.
The magnetization M defined by M = − ∂f

∂H =
− H

2(µ−Jo)2 is obtained from equation (8) and reads

M2 = S(S + 1) − S

N

∑

k

coth
βwk

2
. (10)

The above equation shows a zero-temperature magnetiza-
tion M(T = 0) = S, which is the expected result. The
excitation energy spectrum wk = 2S(µ − Jk) exhibits an
energy gap ∆ = 2S(µ − Jo). Below a critical tempera-
ture Tc, long-range ferromagnetic order is achieved as a
result of the Bose-Einstein condensation of the bosons.
The second-order phase transition (H = 0) occurs when
the energy gap ∆ vanishes, and the Lagrange multiplier µ
is given at T = Tc by

µc = Jo. (11)

The critical region (T � Tc) is dominated by the long
wavelength limit (k � 0). Thus, substituting (11) in equa-
tion (10), expanding the cothx, we obtain the critical tem-
perature Tc

kBTc =
S(S + 1)
I(p, d)

, (12)

with
I(p, d) =

1
N

∑

k

1
Jo − Jk

. (13)

3 Results and discussion

In the thermodynamic limit N → ∞, we can replace
the summation in equation (13) by the integral

∫

Γ

dd−→k
(2π)d ,

where Γ denotes the first Brillouin zone. For small k (in-
frared behavior) and d < p < 2d we have the behavior for
d = 1, 2 [20]

wk = Jo − Jk = A(p, d)kp−d, (14)
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with

A(p, d) =
πddd−p

2 [(p − 1)!]d sin
[

π(p−d)
2

] . (15)

The critical temperature is finally given by

kBTc

J
=

S(S + 1)(d
2 )!(2d − p)2d−1

πd/2−pdp−d+1 [(p − 1)!]d sin
[

π(p−d)
2

] . (16)

Using equation (16), the critical temperature near p =
2d − λ (λ → 0+) can be estimated for d = 1, 2 as

kBTc(λ)
J

� S(S + 1)B(d)
λ[

sin(πd
2 ) − λ cos(πd

2 )
] , (17)

where B(d) = ( d
2 )!2d−1π3d/2

d1+d[(2d−1)!]d
.

To compare with results of the one-dimensional pla-
nar rotator (classical XY model), we renormalize kBTc

J as
tc = kBTc

JS(S+1) . For the particular case p = 3/2, the numer-
ical value for the critical temperature found from (16) is
tc = 2.22 (same value obtained by numerical solution of
the Eqs. (12) and (13)), which is in quite good accordance
with tc = 2.16 ± 0.01 obtained by Monte Carlo simula-
tion [9]. In particular, for d = 1 in equation (7) we have
that tc approaches to zero as

tc(p) � π2

2
(2 − p). (18)

The above result is in agreement with that of the Green’s
function theory [21] in the one-dimensional Heisenberg
model, except for an overall factor of 1/3.

On the other hand, by analyzing equation (17) for the
two-dimensional XY model we observe a discontinuity in
the critical temperature at p = 2d = 4 (λ = 0) that can
be estimated to be

t2d
c (p → 4−) � π3

144
, (19)

while for p > 4 we have t2d
c = 0. In the three-dimensional

(d = 3) case we have the following behavior for wk [20]

wk �






k2, p > 5

k2 ln(1/k), p = 5

kp−3, 3 < p < 5.

(20)

Therefore, the integral in equation (13) is found to be con-
vergent in the region of all p > 3 and we obtain Tc > 0, in
accordance with Mermin-Wagner theorem [1]. The value
of tc(p) decreases as p increases and diverges at p = d = 3.

In order to illustrate the critical behavior of the
model (1), Figure 1 shows the dependence of the reduced
transition temperature tc(p) as a function of p for the cases
d = 1 (dashed line) and 2 (solid line). By performing the
sum given by equation (13) numerically, we obtain the
value of the critical temperature. We note that the criti-
cal temperature tc(p) increases as p decreases, and when p

Fig. 1. The reduced critical temperature tc(p) ≡ kBTc(p)
S(S+1)J

as

a function of p for the quantum XY model with long-range
interaction at low dimensions (d = 1, 2). Insert is the critical
behavior of tc(p) versus p for d = 2 near of the discontinuity
point at p = 4.

approaches p = d we have a divergence in tc(p = d) → ∞.
In two dimensions (d = 2) a discontinuity in tc(p) is ob-
tained at p = 4 (see approximate value of this discontinu-
ity in Eq. (19)) which vanishes just at that point, while in
the one-dimensional (d = 1) case there is no discontinuity
in tc(p) (see Eq. (18)).

4 Conclusions

In summary, we have studied the d-dimensional XY model
with long-range interaction in the boson space by using the
coherent state path integral method [16,19]. The phase di-
agram of the model with arbitrary spin S and parameter p
has been obtained. It is shown that the critical tempera-
ture Tc decreases with increasing p, and becomes infinite
as p → d. In the borderline case p = 2d we have a tran-
sition to a phase with a slow decrease of correlation func-
tions and an infinite susceptibility (Kosterlitz-Thouless-
like transition-KTLT) [8]. Reasonable agreement with
Monte Carlo simulations has been achieved for the case
p = 3/2 in the one-dimensional planar rotator model.

The author would like to thank Dr. Plascak of the Universidade
Federal de Minas Gerais for valuable discussions. This work
was supported by CNPq and FAPEAM (Brazilian Agencies).
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